Closed hypersurfaces of prescribed mean curvature in locally conformally flat Riemannian manifolds

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Closed Hypersurfaces of Prescribed Mean Curvature in Locally Conformally Flat Riemannian Manifolds

We prove the existence of smooth closed hypersurfaces of prescribed mean curvature homeomorphic to S for small n, n ≤ 6, provided there are barriers. 0. Introduction In a complete (n+1)-dimensional manifold N we want to find closed hypersurfaces M of prescribed mean curvature. To be more precise, let Ω be a connected open subset of N , f ∈ C(Ω̄), then we look for a closed hypersurface M ⊂ Ω such...

متن کامل

Schouten curvature functions on locally conformally flat Riemannian manifolds

Consider a compact Riemannian manifold (M, g) with metric g and dimension n ≥ 3. The Schouten tensor Ag associated with g is a symmetric (0, 2)-tensor field describing the non-conformally-invariant part of the curvature tensor of g. In this paper, we consider the elementary symmetric functions {σk(Ag), 1 ≤ k ≤ n} of the eigenvalues of Ag with respect to g; we call σk(Ag) the k-th Schouten curva...

متن کامل

Hypersurfaces of Prescribed Mean Curvature in Lorentzian Manifolds

We give a new existence proof for closed hypersurfaces of prescribed mean curvature in Lorentzian manifolds.

متن کامل

Stable constant mean curvature hypersurfaces in some Riemannian manifolds

We determine all stable constant mean curvature hypersurfaces in a wide class of complete Riemannian manifolds having a foliation whose leaves are umbilical hypersurfaces. Among the consequences of this analysis we obtain all the stable constant mean curvature hypersurfaces in many nonsimply connected hyperbolic space forms. Mathematics Subject Classification (1991). Primary 53A10; Secondary 49...

متن کامل

The Scalar Curvature Deformation Equation on Locally Conformally Flat Manifolds

Abstract. We study the equation ∆gu− n−2 4(n−1)R(g)u+Ku p = 0 (1+ ζ ≤ p ≤ n+2 n−2 ) on locally conformally flat compact manifolds (M, g). We prove the following: (i) When the scalar curvature R(g) > 0 and the dimension n ≥ 4, under suitable conditions on K, all positive solutions u have uniform upper and lower bounds; (ii) When the scalar curvature R(g) ≡ 0 and n ≥ 5, under suitable conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Geometry

سال: 1998

ISSN: 0022-040X

DOI: 10.4310/jdg/1214460864